Dr. Marques Sophie Office 519 Algebra 1

Quiz #3

Justify all your answers completely (Or with a proof or with a counter example) unless mentioned differently.

Problems: We define $Aut(G) = \{\phi : G \to G | \phi \text{ is an isomorphism} \}$ the set of the isomorphism from G onto G and define

 $In(G) = \{f_a : G \to G \text{ defined as } f_a(g) = aga^{-1}, \text{ for some } a \in G\}.$

Be careful the element of Aut(G) are isomorphisms, not element of G!!!!

- 1. Show that $(Aut(G), \circ)$ is a group where \circ denote the composition of homomorphism.
- 2. Show that $(In(G), \circ)$ is a subgroup of $(Aut(G), \circ)$.
- 3. Let $\phi \in Aut(G)$ and $f_a \in In(G)$, that is there is a *a* such that $f_a(g) = aga^{-1}$. Express if possible $\phi \circ f_a \circ \phi^{-1}$ as a f_b for some $b \in G$ (Hint: you should evaluate the homomorphism $\phi \circ f_a \circ \phi^{-1}$ at $g \in G$). Deduce that $(In(G), \circ)$ is a normal subgroup of $(Aut(G), \circ)$.
- 4. Describe In(G), when G is abelian. (Hint: Evaluate an element of In(G) at some element of G, and conclude.).
- 5. Let $\Psi: G \to Aut(G)$ sending $a \in G$ to the isomorphism $f_a: G \to G$ sending g to aga^{-1} .
 - (a) Prove Ψ is an homomorphism. (Hint: Evaluate the image at some $g \in G$).
 - (b) Give the definition of $ker(\Psi)$ and Z(G). Prove that $ker(\Psi) = Z(G)$. (Hint: Evaluate the image at some $g \in G$).
 - (c) Give the definition of $Range(\Psi)$. Prove that $Range(\Psi) = In(G)$.